Beta-representations of 0 and Pisot numbers
نویسندگان
چکیده
Let β > 1, d a positive integer, and Zβ,d = {z1z2 · · · | ∑ i>1 ziβ −i = 0, zi ∈ {−d, . . . , d}} be the set of infinite words having value 0 in base β on the alphabet {−d, . . . , d}. Based on a recent result of Feng on spectra of numbers, we prove that if the set Zβ,⌈β⌉−1 is recognizable by a finite Büchi automaton then β is a Pisot number. As a consequence of previous results, the set Zβ,d is recognizable by a finite Büchi automaton for every positive integer d if and only if Zβ,d is recognizable by a finite Büchi automaton for one d > ⌈β⌉− 1. These conditions are equivalent to the fact that β is a Pisot number. The bound ⌈β⌉ − 1 cannot be further reduced.
منابع مشابه
Beta - representations of 0 and Pisot numbers par
Let β > 1, d a positive integer, and Zβ,d = {z1z2 · · · | ∑ i>1 ziβ −i = 0, zi ∈ {−d, . . . , d}} be the set of infinite words having value 0 in base β on the alphabet {−d, . . . , d} ⊂ Z. Based on a result of Feng on spectra of numbers, we prove that if the set Zβ,⌈β⌉−1 is recognizable by a finite Büchi automaton then β must be a Pisot number. As a consequence of previous results, the set Zβ,d...
متن کاملΒ-expansions with Deleted Digits for Pisot Numbers Β
An algorithm is given for computing the Hausdorff dimension of the set(s) Λ = Λ(β,D) of real numbers with representations x = ∑∞ n=1 dnβ −n, where each dn ∈ D, a finite set of “digits”, and β > 0 is a Pisot number. The Hausdorff dimension is shown to be log λ/ log β, where λ is the top eigenvalue of a finite 0-1 matrix A, and a simple algorithm for generating A from the data β,D is given.
متن کاملBeta-expansions of rational numbers in quadratic Pisot bases
We study rational numbers with purely periodic Rényi β-expansions. For bases β satisfying β2 = aβ + b with b dividing a, we give a necessary and sufficient condition for γ(β) = 1, i.e., that all rational numbers p/q ∈ [0, 1) with gcd(q, b) = 1 have a purely periodic β-expansion. A simple algorithm for determining the value of γ(β) for all quadratic Pisot numbers β is described.
متن کاملOn beta expansions for Pisot numbers
Given a number β > 1, the beta-transformation T = Tβ is defined for x ∈ [0, 1] by Tx := βx (mod 1). The number β is said to be a betanumber if the orbit {Tn(1)} is finite, hence eventually periodic. In this case β is the root of a monic polynomial R(x) with integer coefficients called the characteristic polynomial of β. If P (x) is the minimal polynomial of β, then R(x) = P (x)Q(x) for some pol...
متن کاملAbstract beta-expansions and ultimately periodic representations
beta-expansions and ultimately periodic representations Michel Rigo, Wolfgang Steiner To cite this version: Michel Rigo, Wolfgang Steiner. Abstract beta-expansions and ultimately periodic representations. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, 2005, 17, pp.283-299. HAL Id: hal-00023235 https://hal.archives-ouvertes.fr/hal-00023235 Submitted on 21 Apr 2006 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1512.04234 شماره
صفحات -
تاریخ انتشار 2015